Processing math: 100%
본문 바로가기

기타/시험 관련

Stein 3장 연습문제

여기서도 4k+2만 푼다. (+ Prob 8)

숙제 문제는 6,7,9,17,19,24,32 + Problem 8.

 


2. (Kernel의 조건이 바뀌면 어떻게 될까?)

Suppose {Kδ} is a family of kernels that satisfies:

  1. |Kδ(x)|Aδd for all δ>0
  2. |Kδ(x)|Aδ/|x|d+1 for all δ>0.
  3. Kδ=0 (Not 1!!)

Show that if f is integrable on Rd, then

(fKδ)(x)0 for a.e. x, as δ0.


6. (숙제문제)

In one dimension there is a version of the basic inequality

m({xR:f>α})Aαf1

in the form of an identity. We define the "one-sided" maximal function

 

f+(x)=suph>01hx+hx|f(y)|dy.

 

If E+α={xR:f+>α}, then

 

m(E+α)=1αE+α|f(y)|dy.

 

[Hint: Apply Lemma 3.5 to F(x)=x0|f(y)|dyαx. Then E+α is the union of disjoint intervals (ak,bk) with bkak|f(y)|dy=α(akbk).]

더보기

Proof

 


10.

Construct an increasing function on R whose set of discontinuities is precisely Q.


14.

The following measurability issues arose in the discussion of differentiability of functions.

  1. Suppose F is continuous on [a,b]. Show that D+(F)(x)=lim suph0+F(x+h)F(x)h is measurable.
  2. Suppose J(x)=n=1αnjn(x) is a jump function as in Section 3.3. Show that lim suph0J(x+h)J(x)h is measurable.

[Hint: For (a), the continuity of F allows one to restrict to countably many h in takeing the limsup. For (b), given k>m, let FNk,m=sup1/k|h|1/m|JN(x+h)JN(x)h|, where JN(x)=Nn=1αnjn(x). Note that each FNk,m is measurable. Then, successively, let N,k, and finally m.]

 


18.
Verify the agreement between the two definitions given for the Cantor-Lebesgue function in Exercise 2. Chapter 1 and in Section 3.1 of this chapter.


22.

Suppose that F and G are absolutely continuous in [π,π]. Show that their product FG is also absolutely continuous. This has the following consequences.

  1. ππF(x)G(x)dx=ππF(x)G(x)dx+[F(x)G(x)]ππ
  2. Let F(π)=F(π). Show that if an=12πππF(x)einxdx, such that F(x)aneinx, then F(x)inaneinx.
  3. What happens if F(π)F(π)? [Hint: Consider F(x)=x.]

26.

외측도를 Cube가 아니라 Ball로 정의하면 어떻게 될까? 그래도 똑같은데, 원래 정의를 m로, Ball로 만든 정의를 mB라고 하면 m(E)mB(E)는 자명하고, Reverse Inequality를 보여야 한다. 다음을 보여라. jm(Bj)m(E)+ϵ

Note that for any preassigned δ, we can choose the balls to have diameter <δ

[Hint: E를 열린집합으로 싸매고 적당히 근사되게 finite ball 고르고, 나머지 부분은 cube로 덮고 그걸 ball로 바꾼다.]

 


30.

F가 bounded이고 임의의 Bounded suinterval [a,b]에서 유계변동이고 supa,bTF(a,b)<이면, R에서 유계변동이라고 한다. 다음을 보여라.

  • R|F(xh)F(x)|dxA|h|, for some constant A and all hR.
  • |RF(x)φ(x)dx|A, where φ ranges over all C1 functions of bounded support with sup|φ(x)|1.

Prob 8.  (숙제문제)

Let R denote the set of all rectangles in R2 that contain the origin and with sides parallel ot the coordinate axis. Conseider the maximal operator associated to this family, namely

fR=supRR1m(R)R|f(xy)|dy.

  1. Then, ffR does not satisfy the weak type inequality m({x:fR(x)>α})Aαf1
  2. Using this, one can show that there exists fL1(R) so that for RR lim supdiam(R)01m(R)Rf(xy)dy= for a.e. x.

[Hint: For part (a), let B be the unit ball, and consider the function ϕ(x)=χB(x)/m(B). For δ>0, let ϕδ(x)=δ2ϕ(x/δ). Then (ϕδ)R(x)1|x1||x2| as δ0, for every (x1,x2), with x1x20. If the weak type inequality held, then we would have m({|x|1:|x1x2|1>α})Aα. This is a contradiction since the left-hand side is of the order of (logα)α as α tends to infinity.]

'기타 > 시험 관련' 카테고리의 다른 글

Stein 2장 연습문제  (0) 2024.04.25
대수학1 중간고사 대비  (0) 2024.04.24
미다체 중간고사 복기  (0) 2024.04.22
해석학1 중간고사1 복기  (0) 2024.04.21