여기서도 4k+2만 푼다. (+ Prob 8)
숙제 문제는 6,7,9,17,19,24,32 + Problem 8.
2. (Kernel의 조건이 바뀌면 어떻게 될까?)
Suppose
for all|Kδ(x)|≤Aδ−d δ>0 for all|Kδ(x)|≤Aδ/|x|d+1 .δ>0 (Not 1!!)∫Kδ=0
Show that if
6. (숙제문제)
In one dimension there is a version of the basic inequality
in the form of an identity. We define the "one-sided" maximal function
If
[Hint: Apply Lemma 3.5 to
Proof
10.
Construct an increasing function on
14.
The following measurability issues arose in the discussion of differentiability of functions.
- Suppose
is continuous onF . Show that[a,b] is measurable.D+(F)(x)=lim suph→0+F(x+h)−F(x)h - Suppose
is a jump function as in Section 3.3. Show thatJ(x)=∑∞n=1αnjn(x) is measurable.lim suph→0J(x+h)−J(x)h
[Hint: For (a), the continuity of
18.
Verify the agreement between the two definitions given for the Cantor-Lebesgue function in Exercise 2. Chapter 1 and in Section 3.1 of this chapter.
22.
Suppose that
∫π−πF′(x)G(x)dx=−∫π−πF(x)G′(x)dx+[F(x)G(x)]π−π - Let
. Show that ifF(π)=F(−π) such thatan=12π∫π−πF(x)e−inxdx, , thenF(x)∼∑aneinx F′(x)∼∑inaneinx. - What happens if
? [Hint: ConsiderF(−π)≠F(π) .]F(x)=x
26.
외측도를 Cube가 아니라 Ball로 정의하면 어떻게 될까? 그래도 똑같은데, 원래 정의를
Note that for any preassigned
[Hint:
30.
, for some constant∫R|F(xh)−F(x)|dx≤A|h| and allA .h∈R where|∫RF(x)φ′(x)dx|≤A, ranges over allφ functions of bounded support withC1 .sup|φ(x)|≤1
Prob 8. (숙제문제)
Let
- Then,
does not satisfy the weak type inequalityf↦f∗R m({x:f∗R(x)>α})≤Aα‖f‖1 - Using this, one can show that there exists
so that forf∈L1(R) R∈R lim supdiam(R)→01m(R)∫Rf(x−y)dy=∞ for a.e. x.
[Hint: For part (a), let
'기타 > 시험 관련' 카테고리의 다른 글
Stein 2장 연습문제 (0) | 2024.04.25 |
---|---|
대수학1 중간고사 대비 (0) | 2024.04.24 |
미다체 중간고사 복기 (0) | 2024.04.22 |
해석학1 중간고사1 복기 (0) | 2024.04.21 |